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NEAR-FROZEN QUASI-ONE-DIMENSIONAL FLOW
II. DE-EXCITATION SHOCKS

By P. A. BLYTHE
Aeronautics Department, Imperial College
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The possible existence of compression regions, analogous to condensation shocks, in expanding
non-equilibrium nozzle flows is noted. For power-law nozzle shapes the structure and position of
these ‘de-excitation shocks’ are derived when the relaxation frequency decays algebraically with
temperature. The asymptotic limiting solutions downstream of the de-excitation shocks are also
discussed. For certain nozzle shapes it appears that this limiting solution is an infinite sequence
of such shocks separated in part by regions of near-frozen flow.

1. INTRODUCTION

Y B \

In part I of this paper it was noted that near-frozen solutions for non-equilibrium nozzle

—

< . flow were not necessarily uniformly valid at downstream infinity, even though the relaxation
5 ~ frequency vanished in this limit. For a given nozzle shape this difficulty occurs only for those
= relaxation frequencies which decay sufficiently slowly with temperature. In particular, for
= O a power-law nozzle, i.e.

Eg A~ 5 (1-1)

far downstream, the near-frozen solution does not remain valid if the relaxation frequency
decays no faster than some power of the translational temperature. Throughout the present

paper (part II) it is assumed that
Q~ T, a9
as T— 0, where § > 0.
Whether this model is likely to be physically correct is not easily assessed and the theo-

retical form of (1-2) depends greatly on the assumed form of the interaction potential. The
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226 P. A. BLYTHE

classical Landau—Teller (1936) theory predicts a much faster decay than (1-2). Widom
(1957), however, has suggested various alternative expressions which may be more appro-
priate at low temperatures, all of which adopt the limiting form (1-2). More recently, some
numerical computations (Benson & Berend 1966) have shown that the Landau-Teller
result, although applicable over most of the temperature range, is not valid for either ‘large’
or ‘small’ temperatures (a convenient measure of the size of 7'is the characteristic tempera-
ture of vibration). For low temperatures, Benson & Berend show that the decay is indeed
slower than the classical result. Experimental evidence on this point, as noted in part I, is
inadequate. In this paper the consequences of the assumption that (1-2) holds for sufficiently
low temperatures will be examined in detail.

For a dissociating gas the corresponding rate function is, in fact, generally assumed to
vary as some power of the temperature, and many of the results derived herein are applic-
able, with only a slight modification in the analysis, to such a gas. Differences do, however,
arise in the eventual limiting form of the solution (see § 7). For simplicity only a vibrationally
relaxing gas is considered here.

An important quantity with regard to the asymptotic analysis is the pseudo-entropy

o) dg
—f 7 (1-3)

Broer (1951) defined the pseudo-entropy with respect to an equilibrium isentropic flow.
Here, it is defined with respect to the isentropic frozen flow. It was noted in part I, § 3 that
this integral, evaluated from the near-frozen solution, is not always bounded for large x,
and a necessary condition on v and ¢ for its convergence was given there. Note that for a
given § the integral (1-3) is unbounded for sufficiently small », that is for nozzles which grow
slowly enough. This result also follows immediately from physical considerations; in the
limit v = 0 a return to equilibrium conditions will occur.

However, (1-3) is not directly associated with the rate equation. This latter equation
implies that a return towards equilibrium may occur if

*dx

- (1-4)

is unbounded at large distances. For § = 0 the divergence of (1-4) implies that (1-3) is also
divergent, but the converse is not true. Indeed, when (1-4) converges but (1-3) does not, the
asymptotic solution is not obvious. Cheng & Lee (1966) have also pointed out that the
corresponding integrals for a dissociating gas play an important role in the determination
of the eventual limiting solution far downstream. It is shown here that the convergence or
otherwise of these integrals also dictates the behaviour of the solution between the initial
frozen state and this limiting state.

A convenient way of discussing these asymptotic solutions, which include the region
upstream of the limiting state, is to examine their gross features in terms of certain domains
in the (1/v,0) plane. In this plane (see figure 1)

[=1—v{2—y+(y—1)0}>0 (1-5)
corresponds to the divergence of the pseudo-entropy integral (1-3) (see I, §3). When [ < 0

1 This should be understood throughout this section, unless stated otherwise.
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both the integrals (1-3) and (1-4) are convergent and the near-frozen solution outlined in
part I is then, as noted there, uniformly valid.

For [ > 0 it can be shown, § 2, that the pseudo-entropy (or heat input) will cause a local
increase, at large distances, in the translational temperature if v < 1. (Note that for v < 1,
x—>00,dA4/dxis a monotonically decreasing function of x.) In nozzle flows with heat addition,
which are exactly analogous to the present non-equilibrium flows, this situation is obviously

de-excitation shock

gradual
de-excitation

]/v

modified frozen
solution

2—y conventional frozen solution

l
1

)

Ficure 1. Gross features of the asymptotic solutions.

in general possible and the divergence of (1-3) indicates that the heat input, in comparison
with the area change, becomes locally important at large distances downstream. This
increase in the translational temperature leads to a de-excitation of the vibrational mode.
Moreover, the local value of the relaxation frequency increases, and, under certain circum-
stances, this de-excitation takes place quickly.

In particular if § > 1 an equivalent phenomenon to the condensation shock (Wegener &
Mack 1958) occurs. This ‘shock’, which is a supersonic-supersonic transition, corresponds
to a region of sudden heat release, or, in the present case, to a rapid de-excitation of the
internal mode. The structure of the ‘de-excitation shock’ is controlled by a local return to
equilibrium in which the translational temperature can again become comparable with the
reservoir temperature; in the neighbourhood of the shock the effect of the area change is
negligible. Across the shock there is a finite increment of pressure and density. A feature of
the analysis is that the position of the shock is clearly defined in terms of the initial reservoir
conditions and the parameters v and 4.

If § < 1 and v < 1, the de-excitation takes place more slowly. An equivalent statement is
that the rate of decrease of the relaxation time, or increase of the relaxation frequencys, is less
marked in this case (and becomes even slower as §— 0). The temperature maximum is no
longer defined by local equilibrium conditions, and the effects of the heat input and the area
change are of a comparable order of magnitude in this neighbourhood. In general, at the
position of the temperature maximum, the departure from equilibrium will be O(1).
Although the temperature still attains some local maximum for all » and J in this region

29 VoL. 262. A.
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(see figure 1), the precise conditions under which compressions occur for § <1 are not
easily established. Some comments on this point are made in § 6.

Forv > 1,1 > 0, whichis the small triangular domain in figure 1, no temperature increase
occurs, though the decay does not follow the usual isentropic pattern far downstream (see
§2). The vibrational mode now asymptotes to some modified frozen state, in which the
departure of the vibrational energy from its initial value remains ‘small’.

The preceding phenomena by no means provide an exhaustive description, for v < 1, of
the asymptotic solutions. An obvious and important question to ask is what type of decay
downstream of the shock, or, for ¢ < 1, the local temperature maximum, can be expected.
Again, it is useful to discuss the various possibilities with the aid of a similar diagram to
figure 1.

single de-excitation shock
equilibrium decay

slow de-excitation

equilibrium decay single de-excitation shock

non-cquilibrium energy decay
T~ x— (y=1)»

Y slow de-excitation inl‘init§ ngmber of
2 limiting state as for §>1 de-excitation shocks
1Z °
slow de-excitation
T~ x—(1=0)8

1

modified frozen solution

T~ x~=1/1=9) conventional frozen solution

2—y ]

1 8

Ficure 2. Detailed features of the asymptotic solutions.

For 0> 1, when the asymptotic solution is characterized by a de-excitation shock, it
can be shown, §4, that the initial behaviour downstream of the shock is that of a near-
equilibrium flow with 7" and ¢ decaying accordingly. It is apparent that in general this
near-equilibrium solution will not remain valid at large distances, since the local relaxation
time again increases and some transition towards a frozen flow may occur. The structure of
the solution in this case corresponds to the usual analysis of the breakdown of a near-
equilibrium flow (Blythe 19645): the transition from the equilibrium solution is charac-

terized by the existence of a freezing point (Bray 1959; Blythe 1964 a). Note, however, that
if the exponent
J=1=vy+(y—1)8>0 (1-6)

no freezing point exists, and the flow remains close to equilibrium, for all x, downstream of
the shock. The limit v — 0, for a given 4, is obviously included in (1-6) : the line j = 0 is shown
in figure 2. When j < 0, which, for a fixed value of §, implies a greater rate of growth of A
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(larger v) than for j > 0, a freezing point exists and the flow downstream of this point is not
in thermodynamic equilibrium.

If the integral (1-4), evaluated from the asymptotic behaviour of the equilibrium solu-
tion] downstream of the shock, is divergent, which requires that

k=1—v{l+(y—1)d} >0, (1-7)
then the vibrational energy eventually decays to ground level, the ambient equilibrium state
at infinity. The line £ = 0 is shown in figure 2.

For still larger values of v, when £ < 0, the integral (1-4), again evaluated from the equi-
librium solution, is convergent for large x. In this case, downstream of the freezing point,
the vibrational mode will freeze. The initial effect of this frozen behaviour on the tempera-
ture distribution is negligible. However, it is apparent that this state cannot describe the
asymptotic limiting solution for precisely those reasons that led to the breakdown of the
initial near-frozen solution, and the pseudo-entropy again becomes important. It transpires
that the asymptotic limiting solution is in fact an infinite sequence of de-excitation shocks.
Each cycle contains a shock followed first by a region of near-equilibrium flow, and then by
a much larger region of near-frozen flow, which again terminates in a de-excitation shock.
The strength of each successive shock decreases rapidly in magnitude. In the neighbourhood
of the shocks, the equilibrium term in the rate equation is always locally important.

Foré < 1, when the de-excitation takes place more slowly, it appears that the temperature
profile may have any finite number of stationary values. In the domain j > 0 there is only
one such maximum (cf. § > 1), downstream of which the decay is eventually influenced by
the local equilibrium behaviour. Similarly for j < 0, £ > 0 only one maximum occurs and
the asymptotic limiting decay is as outlined for § > 1 (see figure 2). When £ < 0, v < 1 more
than one local temperature maximum may occur. It is not possible to give precise condi-
tions on the actual number of these maxima without resort to numerical calculations. The
limiting decay downstream of the final temperature maximum s given by the non-isentropic
behaviour 7'~ x~1-/ (see § 6).

It is conventional in deriving the asymptotic limiting solution in non-equilibrium nozzle
flow to assume that the equilibrium term in the rate equation is negligible (Blythe 1964.a;
Cheng & Lee 1966). Apparently this assumption will give erroneous results, for the rate
equation used here, in cither the domainj > 0, or the domain k£ < 0,/> 0, > 1. Elsewhere
it will enable the appropriate limiting decay to be found (downstream of any temperature
maxima). As noted above, in the neighbourhood of a de-excitation shock the equilibrium
term is never negligible. A full discussion of the implications of neglecting this term for
large x is given in § 7. It is shown there that under a suitable set of approximations a simple
model equation can be derived which will describe the asymptotic solution whenever the
equilibrium term is negligible. Although this equation is not strictly valid for § > 1, /> 0,
k < 0 (see figure 2), the type of asymptotic solution it predicts for this region is, somewhat
remarkably, qualitatively similar to that found from the full equations. For the corre-
sponding domain when & <1 this equation shows clearly that only a finite number of

+ The limiting form of the equilibrium solution for the translational temperature, density and velocity is
similar to that for an isentropic flow with zero vibrational energy, e.g. T" ~ x~%-V», though certain of the
constants that arise are not the same in these two cases, in particular, the limiting velocity. Consequently
the criterion (1-7) emerges for both frozen and equilibrium flows (see I, § 3).

20-2
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temperature maxima can be expected, as opposed to the infinite number of shocks
for § > 1. The equation also provides a useful qualitative description in various other
domains of the (1/v, ) plane, and, apart from the multiple shock domain and j > 0, it will
predict the correct limiting decay downstream of any temperature maxima. However,
it should be stressed that it does not provide a quantitative description of the whole of the
asymptotic solution when / > 0.

Unless otherwise stated, the notation used is as in part I. Equation numbers prefixed by
the roman numeral I refer to that equation in part I.

2. THE CUMULATIVE EFFECTS OF DE-EXCITATION
Near frozen solutions of the system of equations (I,2-1) to (I, 2-4) were presented in
part I. It was shown that the conventional expansion
0= 0s+ Aoy (x) + A0y (x)+..., 1
T = Ty(x) + ATy () + ATy () + ..
is a valid solution for x = O(1) only if u,, = 0. The extension to U, = 0 was given in part I.

It follows from the results derived there that 77/7} is unbounded for large x if [ > 0 (see
I,§3), irrespective of the initial value of u. For u, = 0

(2:1)

T =1)a,( m, |Gk .
as x>0 (I > 0), where uj(0) = ud+2y/(y—1). (2:3)

The extension of this result to include u,, = 0 is straightforward and is described in appen-
dix I; the only effect on the subsequent analysis is a change in the magnitude of the error
term.

Similarly, the downstream expansion of the solution for the vibrational energy distri-
bution can be written (£ + 0)

T me \U=Rv 4k
om0 = A el(oo)—l—m(uo—(é’?)) -/;+...:|+0(A), (2-4)
where ¢;(00) is the finite part, as x =00, of the integral defining ¢, (see I, § 5). The terms inside
the square bracket are written in descending order of magnitude for £ < 0. If £ > 0 ¢, (x) is
unbounded for large ¥ and x* is then the leading term in its asymptotic expansion.

It is convenient to assume that any constant factors that may in general occur in (1-1)
and (1-2) are unity. This can be accomplished, if necessary, by suitably re-defining m,and A.
It is also convenient here to replace A by the parameter

__A (__mo ) 8, (2:5)
y(0) \up(0)
This new rate parameter is scaled with respect to a flow time based on #,(c0), which is more
appropriate far downstream; the second factor is then chosen for simplicity so that
AFy~ k-1
for large x. In equation (2-5) it should be understood that A and m, are modified to accord
with (1-1) and (1-2).

Since /> k it would appear from (2-2) that difficulties first arise with the near-frozen

expansion when x = O(A~'). This length scale can also be deduced directly from the
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‘entropy-production’ equation (I,2-24), together with the rate equation (I,2-4), as
defining the region in which the pseudo-entropy gradient is important.

If Y =iy (2-6)
equations (2-3) and (2-4) become

T 1+ (y—1)0s (uo(oo))rl Yig..,

T [
0 my (27)
7o — 0~ Aoy (00) +00 52 V.,
where b= (y—1)v/l. (2-8)

Note that £ > 0 implies that b < 1 and ¢, —¢ is then O(A%) (see remarks above on the ex-
pansion (2-4)). Moreover, since 7y = O(A°) when Y = O(1), an appropriate set of dependent

variables in this region is m
0

tp(00)
u = uy(o0) V (Y, 1),

p= i TI(Y, ),

(29)

T— 1 (uo’(’g))y'l 07, 1),

0 = 0, —A¢(00) —APX(Y, A).

To simplify the ensuing discussion it is assumed that the error termsin (1-1) and (1-2) are

O(x-1) and O(T?*1) respectively. However, some of the results obtained below can be

derived in a more general manner by suitably scaling 4 and Q. Substituting (2-9) into the
full equations gives, for the zero-order terms

MV, 7 =1,
1dll, 1 140, (Zo(w))y_liﬂg‘g
M,dY 7—10,dY m, 9,dY’ (210)
=1,
d%, 1,030,
v~ 7
where I1(Y,2) = (YY) +o(1), etc.,

and the terms neglected, including the case u., = 0 (see appendix), are O (A%, A1/, A, A2/ + D),
The system of equations (2:10) describes a constant velocity, near-frozen flow (since
0o—0 = 0(1)) in which the local entropy production now plays a dominant role in the
determination of the temperature profile.

The equations (2-10) have the solution (& = 1)

=1, =Y,
O = KY--Dn-8) 1 (1-—-0) (y—1)0e (”0(00))7—1 yi-v,

{ m,

(2:11)
S, =0 | S0)S)dS+L,
Yy

where K and L are arbitrary constants, S is a dummy variable, and the lower limit in the
integral defining X, has been inserted for convenience.
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AsY—0
@y~ K-y -1,

and it is easily verified that this matches with the downstream expansion of the near-frozen
solution, 7y~ (mfuy(c0))y=la=-v if
K=1. (2:12)

For k > 0 the integral defining % converges as Y — 0, and, putting ¥, = 0, matching with
the near-frozen solution, equations (2-7) and (2-9), shows that

L=0. (2-134)

If £ < 0 the leading term in the inner expansion (¥ — 0) of % certainly matches with the
appropriate leading term in the downstream expansion (2-7). This is not in itself sufficient
to define L: such a term might now arise from a higher order term in the near-frozen solu-
tion. However, it would be necessary for this higher order term to be O(1°)—a term which
will not in general occur in the near-frozen expansion. L is then defined as the finite part of

. | " 508 ds (2:130)
Y

as Y— 0. In the special case when terms O(A*) do occur in the near-frozen solution (for
example, if b is a positive integer other than unity) this expression must be modified to
include any contribution from the higher order term. The choice of ¥} is apparently arbi-
trary but some care must be exercised since the integral does not necessarily remain bounded
for all finite Y.

In fact it is the latter difficulty which is of especial interest here. It is convenient to divide
the discussion into three parts. (@) §>1

When § > 1, v < 1 for all /> 0 (see figure 1). It follows immediately from (2:11) and
(2-12) that the temperature becomes infinite at the point

=5 = [y ) (214)

(Hence ¥, is any constant such that 0 < ¥, < ¥..) In the neighbourhood of this singularity
it is necessary to seek an alternative expansion. The region is characterized by the tempera-
ture becoming O(1): its structure is analysed in § 3. Physically, the occurrence of this singu-
larity corresponds to a compression through which there is a return towards local equi-
ibrium. This phenomenon is termed a de-excitation shock.

(b) d<1,v<1
Equation (2-11) now indicates that
®0"" Y(l—u)/(l—&), (2.15)

as Y-—>o0, and the temperature is unbounded in this limit. Although there is certainly a
partial return towards equilibrium for large Y, where an alternative solution has to be sought
(see § 6), the overall effect of the de-excitation, or heat addition, is much less marked than
for d > 1.
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() 0<1,v>1

The temperature distribution for large Y is again described by (2:15), through the
exponent (1—v) (1—0)"! is negative in this case and the solution (2-11) remains physic-
ally plausible. In addition, X, tends asymptotically to some constant value. Here the
cumulative effect of de-excitation transfers the flow from the initial near-frozen state to an
alternative frozen one in which the temperature decay is no longer given by the usual
isentropic law.

A summary of the various domains and their characteristic features was given in the
introduction in figure 1.

3. DE-EXCITATION SHOCKS

Here, and subsequently in §§4 and 5, the solution for the domain 6> 1, /> 0 (see
figures 1 and 2) is outlined both for the neighbourhood of the shock, ¥ = ¥, and the region
downstream of the shock.

Upstream of the shock the limiting behaviour as ¥ — Y is, from equation (2-11),

@N (I’S__ Y) l/(6—1),

apart from some constant factor. An appropriate length scale, consistent with the assump-
tion that 7" and ¢, the departure from a fully frozen flow, become O(1) near ¥ =7, is

defined by Y = Y,(1-++A%), (3:1)
where d=0b6(0-1) (3-2)

and b was defined in equation (2:8). The downstream expansion of (2-11), as ¥ —7Y,, can
be written in terms of y as

m_\7! ~YG-D)V —(y=1w -1/6-1)
TN (HO(OO)) l Ys Y (—y) H]

Too— O~ O (0 —1) [0/O=DYE(—gy)~1/@=1),

where only terms O(1) with respect to A have been retained. The corresponding expressions
for p and u adopt particularly simple forms and the order of magnitude of these quantities
remains unchanged. These relations provide upstream matching conditions for the solution
in the neighbourhood of Y.

For this region the correct dependent variables are 7, ¢, V and II. From the continuity
equation (I, 2-1) it follows immediately that, for y = O(1), the effect of the area of change
is negligible to zero order. Consequently, in terms of the above variables, neglecting terms
0(1), the full equations (I, 2-1) to (I, 2-3) can be integrated to give the one-dimensional

(3-3)

relations mny— v,
T(T}u3(c0) + V) = ¥, (34
YTy —1) +4ui(o0) V2 +0 = Ju§(0) + 0.
The rate equation (I, 2-4) becomes

G -n () —q, (35

where Q* = (uy(00) fmg) *=DOQ(T). (3-6)
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Q(T) is now, of course, given by any appropriate expression, valid for 7= O(1) (see,
for example, equations (I, 2:94) and (I, 2-95)), which adopts the limiting form (1-2) as
T—0.

The constants on the right-hand side of (3-4) follow formally by matching with the
expansion (3-3) as y—>—o0, or, more simply, by straightforward continuity arguments.
Since these equations now correspond to flow through a constant area duct and the flow
variables are controlled solely by the rate process, the equations may be thought of as
governing the flow through a fully dispersed shock wave,{ with the particular upstream
conditions that the flow is out of equilibrium, that the density and velocity are finite, but that
the temperature is zero. The overall transition across this one-dimensional region can be
evaluated without resort to any detailed calculations of the structure of the region (see
below). A return to local equilibrium defines the downstream limit y —--co.

In general, non-equilibrium one-dimensional flows can be conveniently discussed in
terms of the Rayleigh-line relations (Johannesen 1961) since these flows are completely
equivalent to one-dimensional flow with heating. For the conventional case of a normal
partly dispersed shock in an initially equilibrium flow the phenomenon corresponds to heat
subtraction: here it corresponds to heat addition. A similar phenomenon occurs in con-
densation shocks (see, for example, Wegener & Mack 1958) and the transition across the
present one-dimensional region, where y = O(1), is formally equivalent to the transition
across such shocks, with a suitable modification in the mechanism of the heat input. By
analogy this region, through which the vibrational energy decays monotonically, is termed
a de-excitation shock. These shocks fall into the general class of aerothermodynamic shocks
discussed by Polachek & Seeger (1958).

A considerable simplification can be made in the usual relations given for such shocks since
the upstream (matching) conditions correspond here to the limit of infinite Mach number.
The appropriate solution of the algebraic relations (3-4) which matches with (3-3) is

yo XY _r+J/(1-0Q)

In y+1 7’
(37)
T {p+/0-@}{1—-/1-0)}
ug(0) (y+1)? ’
where Q = 2(y*—1) (0 - _u%1(>o<g§io —0) . (3-8)

This solution is valid only if the Mach number remains supersonic, or alternatively if Q < 1.
For a diatomic gas § can certainly be no greater than

=1t =
for y = %.

Conditions at the downstream limit of the shock are, as noted above, defined by ¢ = (7))
and can be found independently of the rate equation by means of an iterative solution of
equations (3-7) and (I, 2-7) (Johannesen 1961). A plot of this final equilibrium temperature,

1 The term is used here in the sense that this compression region is governed solely by the dissipative
effects of relaxation (Lighthill 1956). It should not be taken to imply the conventional condition that u lies
between the two sound speeds.
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as a function of the initial conditions, is shown in figure 3 for convergent-divergent nozzles
(4o = 0). Note that these limiting values, apart from the density, are independent of the rate
parameter, the shape exponent v, the frequency exponent d, and are governed solely by the
initial reservoir conditions. (The particular simplicity of figure 3 follows, for u, = 0, from
0w = 0, which is independent of the initial pressure level for a vibrationally relaxing gas.)
However, higher order terms in the solution for y = O(1), which include the effects of the
area change in this region and give a measure of the ‘small’ departure from equilibrium
that exists for large y, will depend on A.

0-3

02

01

Ficure 3. Limiting temperatures in de-excitation shocks.

The actual shock structure is easily determined by a numerical integration of (3:5) in
conjunction with equations (3-7). Although the temperature and internal energy profiles,
as functions of y, are also independent of A to zero order, they are, as opposed to the zero
order limiting values of 7" and ¢, influenced by the parameters v and d.

4. THE SOLUTION DOWNSTREAM OF THE SHOCK

For Y > Y, and O(1) the appropriate dependent variables are 7, 7, [T and V. The conserva-
tion equations remain unchanged and the rate equation can be written
*
& - A—dﬂ%@ [#(T)— . (41)
Note that A is now replaced by an effective rate parameter =2, Since d > 0, this effective
rate parameter is large and equation (4-1) indicates that a near-equilibrium solution is
appropriate in this region. Near-equilibrium nozzle flows have been considered elsewhere
and the difficulties inherent in that problem are again present here. As the details of the
solution for ¥ > ¥, are practically equivalent to those given in Blythe (19645) it does not
seem necessary to do more than outline that approach in this paper. The salient features are
given below and in § 5.
For Y = 0(1), but downstream of the shock, the basic solution is given by the equilibrium

30 VoL. 262. A.
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relations with the initial conditions defined by the downstream limit, y — 00, of the shock
solution. If, for convenience, the full expressions for the mass flow m and the scaled area
ratio A™"/'4 are formally retained, higher order terms in the solution can be obtained by
a conventional near-equilibrium expansion (Napolitano 1962) in inverse powers of the
effective rate parameter,

o :'Ee—k/ldael—l—...,l

(4-2)
T =T+, +...,]

whered, = 7(7,) and 7, etc., define the local equilibrium solution. In general o,; and 7;; are
O(1) though they will depend implicitly on A, since, for example, m = m(1). One could
expand each of these terms so that

7, = 79(x) 4 O (A2e+D_ ) AVE),

but the expansion is more easily derived as in (4-2). Higher order terms in this expansion
can be shown to match with the perturbation to the shock solution.}

The near-equilibrium solution is not necessarily uniformly valid as ¥—oo. In order to
obtain a solution valid for large Y it is convenient to re-write the rate equation in the form

ds LHO* o 1dey 1 _df .
‘&Tf““()‘ % +§a‘f/)d‘“ﬁdr (4:3)
where 4= (0—0)[c (4-4)
is the relative departure from equilibrium. As Y—oco the behaviour of the factor
[IQ* 1ds
—gitad™ 1 do .
it s ay (4:5)

dominates the structure of the solution. From the downstream expansion of the equilibrium
solution this factor has a zero for large ¥ if

J=1=v{y+(y—1)d} <O0. (4-6)

In the neighbourhood of this point, usually termed the freezing point (Blythe 19645), it is
apparent that the near-equilibrium solution no longer holds as both terms in (4+5) are now
of the same order of magnitude (see §5).

If j > 0 the flow remains close to equilibrium since the term

A-TIQ* [V

is then dominant even as ¥ —>o0. For a given value of 4, j is always positive for sufficiently
small v; for these cases the above result implies that the asymptotic decay downstream of the
shock is, to zero order, that of an equilibrium flow. This limiting state is certainly correct
for v = 0 and it seems plausible that a similar result will hold for some finite range of v.

1 In certain situations this type of perturbation solution is singular near any boundary where some initial

conditions are prescribed (Bloom & Ting 1960). Here these boundary conditions are replaced by matching
with the downstream near-equilibrium limit of the shock solution and this difficulty does not arise.
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5. § > 1,7 < 0: THE FREEZING DOMAIN DOWNSTREAM OF THE SHOCK

For j < 0, as noted in §4, (4-5) passes through a zero when Y = O(A%). In this case
a suitable independent variable, for Y large, is defined by

Y = Mg, (5:1)
where ¢ is some constant (see appendix II) chosen so that £ = 1 at the freezing point (zero

of (4:5)). When £ = O(1) the conventional near-equilibrium expansion breaks down.
For{ <1,4= 0(1) and T = O(2*), where

v=—(y—1)dv[s. (5-2)
It follows that ¢ is exponentially small with respect to A in this region. Moreover, since o is
a monotonically decreasing function of §, the value of ¢ upstream of the freezing point will
provide an upper bound for an estimate of its magnitude for all { = O(1). If such exponenti-
ally small terms are neglected in the conservation relations then these equations reduce to
the usual isentropic form, with ¢ = 0, and are uncoupled from the rate equation. Any
arbitrary constants that occur in the solution for the flow variables are found by matching
with the downstream limit of the near-equilibrium solution. For these values of the
temperature, density, etc., the internal energy distribution can be found either by formally
integrating the rate equation or by a further application of matching techniques. This latter
approach yields more insight into the nature of the solution. The full details need not concern
us here and can be found in Blythe (1964 ) ; the principal results are indicated below.

For £ = 0(1), the structure of the solution for ¢ can be split into three regions. When
£ < 1 a modified perturbation solution, in which both of the terms in the factor (4-5) are
important, is valid. This solution matches with the downstream expansion of the near-equi-
librium solution for 4. In the neighbourhood of the freezing point (the transition layer) this
perturbation solution breaks down and there is a rapid departure from equilibrium. Within
the layer, whose thickness with respect to £ is O(A%), s = O(A*). Downstream of the layer,
£ > 1, the solution is usually found by neglecting the equilibrium term in the rate equation.

In the present case this latter approach gives, for £ > 1, (£ = 0),

(rzDeXp{—%(E‘-—l)}; (5-3)

where g is a positive constant (see appendix II) and only the dominant terms have been
retained. Matching with the transition layer solution (Blythe 19646) shows that

2m 1 7Y
D— A/*(T@W? exp| (751)7@: (54)
and again only the dominant terms are included.

For k£ > 0, which implies that (1-4) is unbounded, equation (5-3) indicates that ¢ always
decays to zero in an exponential non-equilibrium manner. If j < 0 this exponential decay
is always slower than the equilibrium (exponential) decay. Since the pseudo-entropy
gradient, evaluated from this solution, remains negligible at large distances (and hence the
conservation and rate equations remain uncoupled) it is apparent that (5-3) describes the
limiting asymptotic decay for this case. Note that a similar analysis does not hold for j > 0.
In particular the decay (5-3) is then apparently faster than the equilibrium decay, but, as

pointed out in § 4, the equilibrium term cannot be neglected for large £.
30-2
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For k < 0 equation (5-3) predicts that the vibrational energy becomes frozen for large &.
Itis apparent, however, that the vibrational mode cannot remain in this state as  —o0, since
any near-frozen behaviour will break down for precisely those reasons already advanced
in § 2: the pseudo-entropy will again influence the asymptotic solution for large £.T As this
frozen value of the vibrational energy is exponentially small, it follows that the pseudo-
entropy gradient will only become important exponentially far downstream. The corre-
sponding length scale to (2-6) is defined by

Y, = [17%0(e0) MY, (5+5)
where ¢(00) is the frozen value defined by (5:3) and (5-4). In the region ¥, = O(1) the

equations reduce, under suitable transformations, to a similar form to those described in the
preceding sections for ¥ = O(1), with the parameter A replaced by A~%s(c0). It is apparent

Tyip,
(5]
=~
k=
s . S
g (a) j > 0; equilibrium decay
8
= L i,

T

Y
Tib.

(b) j < 0, k > 0; non-equilibrium
decay

temperature

Tyib.

(¢) k <0,1> 0; oscillatory

temperature

Ficure 4. Temperature profiles (schematic) for / > 0, 6 > 1.

t The solution outlined in Blythe (19645) is not uniformly valid as § -0 for k < 0, 7 > 0. It is assumed

. @ do
in that paper that J ~ converges.
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that the whole cycle repeats an infinite number of times with successively smaller values of an
appropriate local rate parameter. Since the non-uniformity that occurs when ¥, = O(1) is
already exponentially far downstream, and is characterized by an exponentially small value
of ¢, any further repetition of this pattern will probably be of little practical significance.

A summary of the various types of solution possible for § > 1, and their position in the
(1/v, ) plane was given in figure 2 (see § 1). Note that, for a fixed d, the equilibrium decay
(j > 0), the non-equilibrium decay (j < 0, £ > 0) and the repetitive pattern of near-frozen
flow bounded by de-excitation shocks occur for successively larger values of v. This latter
result seems intuitively obvious; even larger values of v, for which /> 0, imply that the
near-frozen solution for x = O(1) remains valid at downstream infinity.

Another useful way of summarizing the asymptotic states for § > 1 is to plot the transla-
tional and vibrational temperature profiles as functions of distance through the nozzle.
This is done schematically in figure 4. In each case de-excitation shocks are represented
simply as discontinuities. A more detailed picture would include their structure.

6. GRADUAL DE-EXCITATION: THE DOMAIN 0<<1, v<<1

It is apparent from § 2, cases (b) and (¢), that the sudden de-excitation encountered for
finite ¥ when § > 1 does not occur for § < 1. In particular, as noted in §2(¢), if » > 1 the
effect of the pseudo-entropy, or heat input, is to transfer the initial frozen state to some
modified frozen state with a non-isentropic temperature decay. A small degree of de-
excitation does take place but the vibrational energy remains finite and O(1) at down-
stream infinity. For smaller values of v < 1 the asymptotic solution is not so readily deduced
and it is this case which is considered in the present section.

When v < 1(d < 1) the limiting behaviour as ¥ 00 of the solution for ¥ = O(1) (equa-
tion (2-15)) indicates that the translational temperature again becomes significant at large
distances downstream. From (2:15) it follows that 7= O(1) when Y = O(A%¥1~?) or
x = O(A~10-) (note: d < 0 for § < 1). Hence, a suitable length scale is defined by

x = A-Ha-nF, (6-1)
In this region, ¥ = O(1), p = O(A’/1-») and it is convenient to write
p = V-7, (6-2)

The remaining dependent variables 7', ¢ and u are O(1) in this region, and it is implied that
a significant degree of de-excitation of the vibrational mode will occur. For the domain
v <1, d <1, the downstream expansions of equations (2-11) give

T~ A YA90-8 ¢ ~g,—A, TA-0IA-8)
’b~~ Y,.,, Vel } (6'3)
where again only the dominant terms are included and
’A — ( My )7”1 [(7—-1) (1—9) 0 (uo(oo))w-l:ll/(l—s)
1= u,(00), b
y(00) { m,
(6-4)

o= (e (2o

These relations provide initial conditions, as Y -0, for the solution when Y= 0(1).


http://rsta.royalsocietypublishing.org/

. |
/I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

240 P. A. BLYTHE

In terms of the dependent variables 7, ¢, ¥ and j and the independent variable ¥ there
is little simplification in the full equations. (To zero order 2”4 can be replaced by ¥” and
the mass flow can be assumed given by its fully frozen value.) Detailed conclusions regarding
the solution in this region are not possible. However, a few qualitative observations can be
made. It is apparent that the region is characterized by both the heat input and the area
change effects being important at the same time.

The asymptotic limiting solutions as ¥ oo are easily found (see § 7). For k < 0 ({ > 0) it

can be shown that (0 = 0)
kg

T gV 098 g~ — = y-a-ns, (65)
— (1-0D/n1/é
where g {ue(oo) 1 V( my ) } ’
uy(00) dmy \uy(0) (66)
and u2(00) = u3(00) + 204.

For k£ > 0 the limiting solutions are similar to those found for 0 > 1. When j < 0 o decays
exponentially, though @ is negligible, and the temperature decays algebraically as in the
frozen solution (7'~ ¥~@-D¥) but its magnitude is not given by that solution. For j > 0
the limiting solution for ¢ is always influenced by the equilibrium term.

A discussion of the corresponding limiting solutions for a dissociating gas has recently
been given by Cheng & Lee (1966).

Since this final limiting behaviour is one in which the translational temperature decays
itis apparent from (6-3) that 7" must pass through at least one maximum value. By analogy
with § > 1 (see figure 2) it might be expected that several stationary points would occur for
k < 0, but that for £ > 0 there would only be a single maximum value. It is possible by
considering the integral curves of a simple model equation to give some support to this
conjecture; this is dealt with in § 7.

The density and pressure profiles in this region are unfortunately not so readily deduced.
Equations (6-3) show that the density gradient is always negative initially but that the
pressure gradient is positive if

1/v > 2-4. (6:7)
When 8 > v, for which d27/dY? > 0 initially, this inequality is automatically satisfied. If
8 <v,d2Td¥? < 0 initially, but (6-7) will still hold for some v and 8. In those cases when
(6-7) is not satisfied it is not clear whether the pressure gradient will become positive before
the asymptotic limiting decay is attained. Similarly, it does not seem possible to determine
analytically whether the density gradient will become positive in some region of the flow.
It would seem necessary to resort to numerical computations in order to establish more
precisely the conditions under which compressions occur. (The model equation of § 7 is not
sufficiently detailed to provide information on this point.) In general it can be expected
that the form of Q(T), for 7= O(1), will have some bearing on this question.

One such computation, with ¢ = 0-5, v = 0-9, (therefore /> 0, £ < 0) 6, = 1 and u,, = 0,
shows that both the density and pressure gradients are negative throughout the flow. The
inequality (6-7) is not satisfied for this case. For the numerical solution only terms O(1) were
retained in the equation. The explicit expression used for (7’) was of the form (I, 2-9)
with D, = 5. (It should be stressed that the values § = §, D, = 5 were chosen to give an
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example of a solution for § < 1; it should not be taken to imply any correlation of the low-
temperature experimental data.) Figure 5 shows the translational temperature and vibra-
tional energy distributions. It is interesting to note that the magnitude of the temperature
maximum of which there is only one, is numerically very small. The initial rate of growth

01 | [ —— I 0

o
0-01 0-1
0-001 ! L1 11 l L1 11001
0-01 » 01 10

A, P-a-nis
Ficure 5. Temperature and energy profiles far downstream for the gradual de-excitation case
8 =05, v =09, with 6, = 1, u, = 0 and D, = 5. The broken lines denote the asymptotic
limiting solution (equation (6-5)).

T~ Y0-»0-9 — ¥% is small in this particular case. In fact, the equilibrium term can be
neglected throughout for this asymptotic solution without incurring any significant
numerical error, although it is not mathematically correct to do so in general for § < 1.
Presumably for smaller values of 1 —4 the temperature maximum is numerically larger.

7. ASYMPTOTIC SOLUTIONS, A MODEL EQUATION
7-1. The model equation

It is usual when discussing the limiting form of the solution far downstream to argue that
the equilibrium term in the rate equation is negligible (Rosner 1962; Cheng & Lee 1966).
Since the temperature again becomes O(1) for all [ > 0 (0 > 0) this assumption may, in this
domain, lead to erroneous results. However, downstream of any temperature maxima the
assumption will have some validity, though obviously it can never lead to a uniformly valid
description if { > 0, £ < 0, d > 1 (see figure 2). In other cases, apart from j > 0 when the
equilibrium term dominates the asymptotic behaviour, the correct final limiting decay
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can be deduced from the ensuing relations. Consequently, it is useful to consider this
approach in some detail; the qualitative features of the solutions that can be obtained are
surprising.

As T'—0 it is apparent from the energy equation that the velocity asymptotes to some
constant value provided that the vibrational energy either freezes or decays to ground level.
By using this result and by neglecting the equilibrium term in the rate equation, we can
reduce the governing equations (I, 2:1) to (I, 2'4) to the following coupled differential

equations v 1 1dT _ 1ds (7-1)
T x y—1Tdy Tdx
do/dx = — x> T?0, (7:2)

where A now includes any contributions from the constant speed « and the mass flow m.
The relaxation frequency has been replaced by its behaviour at low temperatures, which is
consistent with the preceding approximations. Equations (7-1) and (7-2) can be combined
to give the single second-order relation (! > 0,0 1,v =1,k =+ 0)

dw , d2w

B = b .
wh o 2 (7-3)
where w=[Tx{y=D\=0,  x, =AWy, z=["Ukyl (7-4)
and f=208/(0—-1); (7-5)

the exponent b was defined in equation (2-8). The model equation (7-3) will apparently
give a meaningful description only in those regions where the temperature is small and the
vibrational mode is nearly frozen.

A further transformation (4 = 0)

n=—z"rdw/dz, {=z"w, (7-6)

dy _ F—(1+p)
d 7-3) t S/ R s 2 77
reduces (7-3) to ac 7] - (7:7)
where u=—kllp. (7-8)

The parameters # and §, and therefore implicitly » and §, play an important role in deter-
mining the integral curves of equation (7-7).

72. [>0, k<0, d>1

For this particular case (see figure 2) the solution of the full equations, as 10, predicts
a repetitive pattern of de-excitation shocks. Obviously the model equation will not give
a uniformly valid description of this solution for large #, though the equation will be valid
in certain regions of the flow. The structure of the solution of (7-7) in this case is, however,
particularly informative.

Under these conditions § > 1, # > 0 and both 7 and { are positive. The integral curves of
equation (7-7) are sketched for the positive quadrantin figure 6. These curves are dominated
by the behaviour near the singular point

n=p(l+p)~VE = 1+p) (7-9)

and are spirals which eventually asymptote to the 7, { axes. The direction x (or z) increasing
is shown by the arrows. This follows directly from the relations (7-6). Note that the singular
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point corresponds to a decaying solution
T x= AN gms =08 (7-10)
of equations (7-1) and (7-2)t. (The constant factors have been omitted in (7-10.) Since

the solution always moves away from this point, (7-10) cannot describe the limiting
behaviour for large x.

g

Ficure 6. Integral curves of the model equation for / > 0, £ < 0,6 > 1.

The limiting behaviour of 7"and o, predicted by the model equation, is not immediately
apparent from these integral curves. In general it can be shown that the translational
temperature takes stationary values on

n=>5b(0—1)C; (7-11)

this line is shown in figure 6. For the present range of the parameters 5(6—1) > . On
integral curves which approach this line from below the stationary value is 2 minimum, on
curves which approach the line from above it is a maximum. Any integral curve will
intersect this line an infinite number of times. In particular, it is a trivial matter to show
that the successive temperature minima decrease in magnitude.

Itis apparent that the model equation, as well as the full equations, predicts an oscillatory
temperature profile for / > 0, £ < 0 and § > 1, even though the model equation cannot, in
this case, give a uniformly valid quantitative description for large x. However, the behaviour
of the model equation and that of the full equations coincide in the sector 4 (see figure 6),
where, for 7 ‘small’, the flow is essentially frozen. In sector B the temperature gradient

+ A second apparent limiting behaviour is a frozen solution in which 7" ~ x~#=®=1; it is easily shown,
for example, that this implies negative values of ¢ and is consequently inadmissible.

31 VoL. 262. A.
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becomes positive and the cffects of the heat input, or pseudo-entropy, are important. This
sector, where 0, —o and T are still ‘small’, corresponds to the region described in §2 and
the model equation is also valid there. The de-excitation shock predicted by the full equa-
tions occurs in C. A possible shock path, together with the near-equilibrium region down-
stream of the shock, is sketched in figure 6. Through the shock the temperature will increase,
at least initially, more slowly than (7-8) predicts. In the near-equilibrium region, the actual
temperature decay is slower than that given by (7-3). For the full equations the temperature
maxima are defined by local equilibrium conditions; for the model equation this is not so.
Nevertheless, this latter equation does suggest that there is no simple limiting law in this case
and the cyclic nature of the solution of the full equations can be inferred.

73. >0, k<0, 0<1, v<1

In this domain, see figure 2, it appears (§ 6) that there are no regions of rapid de-excitation.
The actual temperature profile is, however, not clear. It was noted in § 6 that there will be
at least one maximum and it was conjectured, by analogy with § > 1, that there may be
more than one when £ < 0. Having noted the results of §7-1, it is not surprising that the
model equation, which will give the various decays outlined in § 6 for j < 0, also leads to
some useful results in this case.

Here the parameters f and g are negative, as is the co-ordinate 7. It is convenient to define

nh=-n ﬂl:m/& M= =4 (7'12)
where y; < 1. Equation (7-7) becomes

d — ) — (P
W T

By considering the behaviour near the singular point corresponding to (7-9) it is seen that
the integral curves depend implicitly on the magnitude of the parameter

=, 1-v 4
ST N TR (1)
which is positive in the present domain but can range over all finite values. It follows that

there are two cases to consider.

4

(a) 4c>1

Near the singular point, asin § 7-1, the integral curves are a right-handed family of spirals.
Here, however, on { = 0(y, > 0)

dy,/dl = 1—p, > 0.

There is one and only one curve which passes through the origin on which dy,/d{ = 1. The
integral curves are sketched in figure 74, where the arrows again show the direction x (or z)
increasing. Note that this direction is now towards the focus of the spiral, which again
corresponds to the decay given by (7-10). This solution, in the present case, is the correct
limiting solution (0 == 0) downstream of any temperature maxima (see equation (6-5)).

The line 7 = (l_b\) bé (7.15)

is the counterpart of (7-11) and its intersection with the integral curves defines stationary
values of the temperature profile.
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Initial frozen conditions correspond to values of 7, and { which are both small buty, = o({).
Such points lie beneath the integral curve passing through the origin. It is apparent that
integral curves passing through this region will intersect the line (7-15) a finite number of
times. The model equation also predicts that successive maxima will decrease in magnitude.
Without resort to detailed numerical calculations it is not possible to predict the number of

2 V)
X
) D)
= \y
3 “J)&
&
ﬂ\"m
n (a) 4¢ > 1
.
g
(0) 4¢ < 1

g

Ficure 7. Integral curves of the model equation for / > 0, £ < 0,d < L.

stationary values that will occur in any given situation. (Such an investigation must be
applied to the full equations to avoid any quantitative errors: in the neighbourhood of the
maxima the equilibrium term would, in general, be important. See, however, §6.) For
the example given in §6, in which 4¢ = 10, only two stationary values, one maximum,
occur. Nevertheless, the form of the integral curves clearly indicates the possibility, pre-
sumably for sufficiently large values of ¢, that there will be more than one local maximum.

In this context it is of interest to note the behaviour as ¢ — 1, since in this limit it follows
from equation (7-14) that ¢ becomes large. For § = 1 equation (7-3) is not valid but the
corresponding relation is easily deduced from (7-1) and (7-2). The appropriate integral

31-2
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curves of that equation are closed loops and it can be inferred that the temperature profile
will have an infinite number of stationary values, as for > 1.

(b) 1>4¢>0

The behaviour near the singular point is modified and the integral curves are shown in
figure 7 (b). Initial frozen conditions are as in («) and all integral curves passing through this
region correspond to the temperature profile having two stationary values.

Thelimitc—0isofinterest. In the present domain the limiting case ¢ = 0 is only possible as
the marginal one in which y— 1, §— 0. For this case, an exact integral of (7-1) and (7-2) is

T = Ax-0-D Bx2, (7-16)

where 4 and B are positive constants (for A small). The temperature profile as for v > 1, has
apparently no stationary values. Equation (7-15) shows clearly the type of non-uniformity
that occurs for large x, in this limiting case, as 1 0.

74. k>0

Irrespective of 0 the denominator in (7-7) is now finite for all values of y and { that are of
interest. The integral curves are easily obtained and figure 8 shows these curves for § < 1.
It can again be argued that the temperature profile will have two stationary values on curves
which pass through the near-frozen region.

™

Froure 8. Integral curves for £ > 0,5 < 1.

For 0 > 1 the full equations predict a rapid de-excitation region in which the equilibrium
term becomes important. In the region of the de-excitation shock the model equation is not
quantitatively correct (similar errors may also arise in the neighbourhood of the temperature
maximum for 0 < 1). Downstream of the temperature maximum both the model equation
and the full equations predict, ifj < 0, the decay (5-3) for the energy and 7'~ x~@ -1 where
any constant factor is not determined by the isentropic solution. This limiting decay also
holds for ¢ < 1.
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The model equation also predicts that ¢ decays according to (5-3) even if j > 0. This
result is erroneous since the equilibrium term will be important for large x (see § 5).

8. CONCLUDING REMARKS

When the nozzle shape and the relaxation frequency are described by the power law
behaviours (1-1) and (1-2) respectively it would appear that there is a wide variety of
possible asymptotic solutions. The different types of asymptotic behaviour were summarized
in figures 1 and 2. Associated with these solutions is a somewhat bewildering array of length
scales. These are listed in tables 1 and 2 with respect to the magnitude of ¥ = AV,

TABLE 1. SOLUTIONS FOR LARGE %, 0 > 1, [ > 0.

entropy position of near- transition
range of production  1st shock equilibrium (freezing point)  frozen asymptotic decay
exponents ~ (§ 2) (§3) (§4)  (§4ands)  (§5) (§ 4, 5, and 7)
k<0 Y = Adigg £E>1 pattern repeats
£—-1 = 0(Ad)
k>0, Y=0(1) Y=Y, =0(1) Y>7Y, Y = A% ¢§ no frozen ATvEE
Jj<0 Y—Y,=0(\*) Y =0(1) | £&=1 = O(A¥) region for o~ exXpy— ke
: large x T ~ x—=Dv
>0 no freezing no frozen o~
point region for T~ g—ly-Dv
large x

Table 2. SOLUTIONS FOR LARGE %, 0 < 1, { > 0.

entropy gradual asymptotic
range of production de-excitation decay
exponents (§2) (§6) (8§ 6 and 7)
v>1 Y = 0(1) solution frozen o - constant
for Y large T ~ x~0-DiA-8
vr<LE<O0 Y=0() o~ x40

T ~ x—1-»8
k>0,7<0 Y =0(1) Asfor § > 1
j>0 Y=0(01) Asforo > 1

Y=0( /\—{('y—l)v(l—ﬁ)}l(l——v))

For ¢ > 1 the asymptotic solutions are all characterized by de-excitation shocks. The
structure of the solution for £ < 0(¢ > 1) is repetitive, each cycle being characterized by
successively smaller values of an effective rate parameter. In the second cycle this parameter
is already exponentially small; it follows that the second de-excitation shock occurs expo-
nentially far downstream and that the temperature jump across the shock is also transcend-
entally small. It seems, as noted in § 5, that any further repetition of this pattern will be
negligible in practice. For £> 0 only a single de-excitation shock occurs, though the
cventual limiting decay downstream of the shock depends on whether j = 0 (see figure 2
and table 1).

For § < 1 there are no regions of rapid de-excitation, but the eventual limiting decay still
depends on the exponents £ andj (/ > 0). For £ > 0 there is only one temperature maximum.
Note, however, that although for £ < 0 there may be several local maxima, the number of
these maxima is now finite, as opposed to the corresponding situation for § > 1.

It is apparent that the conventional approach of neglecting the equilibrium term in the
rate equation for large x can lead to important quantitative errors, in particular it will always
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do so in the domain /> 0, £ < 0, 0 > 1. Nevertheless, this approach can still be used to
predict some of the qualitative features of the asymptotic solutions; except in the above
domain, and also for j > 0, it will yield the correct limiting decay downstream of any
temperature maxima.

The author is grateful to Dr N.C. Freeman and Mr J. L. Stollery for some helpful

comments.

APPENDIX I. DOWNSTREAM EXPANSION OF THE NEAR-FROZEN SOLUTION FOR #, = O.

When u,, = 0 the near-frozen expansion for ¥ = O(1) was outlined in part I. For nozzles
such that 4~ |x|" as ¥ —+—o0 the expansion (II, 2-1) isstill valid to O(A) ifn > 1. Ifn < 1 the
dominant perturbed quantity is O(A2V), where N = n/(n-+1). For these terms the associated
expressions 75y, etc., are directly proportional to the fully frozen solution and the expansion
for x = O(1) can be written

o= 0,(A)+ Aoy (x)+
T=T, (x, A\)+AT(x)+...,

where 0= 00— ANK,y, ; 1—}—7 1A2NK
0
(see equation (I, 5-25)). If 7 and o,, are now replaced by T,and o, the results outlined in § 2

again follow.

APPENDIX II. THE CONSTANTS ¢ AND g.

The zero approximation to the flow variables p, 7, etc., for £ = O(1) is given by the local
equilibrium solution with the initial conditions provided by the downstream limit of the
shock solution. Since the freezing point (j < 0) occurs where ¥ = O(A#¥) the expansion of
the equilibrium solution for ¥ large will define ¢ to zero order. This expansion gives

AL ACS) Oy T Y-ty
I/e I/OO - UO(OO) s Hg Ko Y 5 7: CTY ' s
where (o) = 25 +20.
1 vl
CT - (V HseSe) Tse:
g, G
and S, = {1 —exp ( 7 )}exp{—— %}

Here T, etc., are the downstream equilibrium limits of the zero order shock solution. It

follows from this expansion and equations (4-5) and (5-1) that ¢ is defined by

¢ [ Cé‘+1 ( O(OO))(V—I)B]-IU
(y—1)v0,V2\ m, ’
From these results it is a relatively simple matter to show that

_ Cpgm
= =),

(see equation (53)).
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ArpreEnDIX ITI. NoTATION

area ratio.

constants, see (I, 3-5).

constant, see (I, 2-8).

constants, see appendix I, part I.
(y—1)v/l.

constant, see (I, 4:16).

specific heat at constant pressure.

specific heat at constant pressure
for the active modes.

specific heat contribution from the
vibrational mode.

constant, see appendix II, part I1.

constant, see (II, 5-4).

constants, see (I, 29).

the operator d/dX+dZ/d | X|.

b(0—1) (part IT).

constants in outer solution (part I).

constants in outer solution (partI).

pQ/u.

see (I, 5-21)

see (I, 5-21).

see (I, 4-14).

constant, see (II, 5-3) and ap-
pendix II, part II.

see (I, 7-8).

defined in (I, 5-15) and (I, 5-22).

nozzle length scale (e.g. throat
height).

constant, see (I,4-16).

exponent, 1 —v[y+ (y—1)4].

constant in pseudo-entropy solu-
tion (part IT).

constants occurring in the outer
solution (part I).

exponent, 1 —p[14(y—1)7d].

constant in pseudo-entropy solu-
tion (part II).

see (I, 65).

exponent, 1 —v[2—y+ (y—1)d].

see (I, 5-15) and (I, 5-22).

see (I, 5:22).

mass flow.

n/(n+1).

n

exponent associated with upstream
nozzle shape.

effective heat input, see (II, 3-8).

constant, see (II, 6-6).

gas constant.

defined by (I, 5-15) and (I, 5-22).

see (I, 5-22).

dummy variable.

(0 —7)/o, relative departure from
equilibrium.

temperature.

dummy variable.

A-nlet Dy stretched velocity in in-
ner layer (part I).

velocity.

exponent, see (11, 5-2).

ufuy(c0).

[Tx{r="]1-0 see (II, 7-4).

AV@+tDy stretched inner variable.,

distance through nozzle.

AVA=2)x,

AV, stretched co-ordinate for
pseudo-entropy regime.

stretched distance co-ordinate for
shock solution, see (II, 3-1).

k)X |1
[~Hkxd,

parameter in (I, 4-14).
exponent in (I, 2-8).

I' function. ‘
incomplete I' function.
Euler’s constant.

specific heat ratio for the active
modes.

constants, see (II, 6-4).

exponentassociated with frequency
decay, see (11, 1-2).

0, —0, departure from a fully
frozen flow.

stretched co-ordinate in model
equation, see (II,7-6).

stretched co-ordinate in model
equation, see (II, 7-6).
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0] scaled temperature in pseudo- T relaxation time.
entropy regime, see (II,2-9). ) constant, see appendix 11, part I1.
0, characteristic temperature of QO relaxation frequency.
vibration.
K constant, see (I, 4-19). Subscripts
A rate Parameter, see (I,2-6). 0,1,n/(n+1),...,etc. denote perturba-
A modified rate parameter, see tion quantities in the various solutions.
(11, 2-5).
—k/1p. Dimensional quantities
v exponent associated with down- All variables defined above are non-
stream nozzle shape.

dimensionalized according to the scheme
outlined in (I, 2-5). Any dimensional quan-
tities are indicated by primed variables,

é stretched nozzle co-ordinate near
freezing point, see (II,5-1).

7 scaled density for pseudo-entropy,
see (1I,2-9). e.g.o’, T, etc.

p density. . .

5 see (1, 2-9). Equation numbers

p vibrational energy. The roman numeral I or II prefixed to

7 local equilibrium value of vibra- an equation number refers to that equation
tional energy. in the respective part of this paper.
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